AN EVENING AMONG THE BOOKS

Wednesday, April 28th, 2010 - 5 p.m. – 7 p.m.

“I should like to see in each library a select company of the Immortals set apart for special adoration.” [William Osler, Books and Men]

MAYO FOUNDATION HISTORY OF MEDICINE LIBRARY
PLUMMER BUILDING 15-07
INTRODUCTION

"An Evening Among the Books" was conceived by Miss Ruth Mann, History of Medicine Librarian, 1966-1983, on December 29, 1969, as a way of recognizing the fiftieth anniversary of the death of the great physician, Sir William Osler. It is adapted this evening by Hilary J. Lane, History of Medicine Library Coordinator, in celebration of the 40th Annual Meeting of the American Osler Society.*

“All of us in our careers have tried to emulate someone living or dead whom they have greatly admired. Some of you may feel this way about Sir William.

Osler retained his interest in books and libraries all of his life. As his own library developed he considered its educational value as well as its literary and historic interest. It was a great library and he grouped the books into eight general divisions. The first of these he called Bibliotheca Prima. He arranged, in chronological order, the books from his library representing the important contributions in the evolution of science, including medicine. It is this first section that we are concerned with this evening. A number of books that were in Sir William’s library and duplicated in our holdings have been chosen for display. They are all literary landmarks of the first magnitude. Osler’s comments about the books and authors are included. The numbers are from the published catalogue of his library, the Bibliotheca Osleriana.”

Mr. Thomas E. Keys, Director
Mayo Clinic Libraries, 1946-1969
* Because of limited space not all the titles in the original exhibit are listed and displayed
BIBLIOTHECA PRIMA

Hippocrates, 460-375 B.C.

“In the Hippocratic writings is summed up the experience of Greece to the
Golden Age of Pericles. Out of philosophy, out of abstract speculation, had
come a way of looking at nature for which the physicians were mainly res-
ponsible, and which has changed forever men’s views on disease. Medicine
broke its leading strings to religion and philosophy.”

149. Octoginta Volumina … nunc tandem per M. Fabium
Calum Rhauennatem … latinitate donat … ac nunc primum
in lucem aedita … (Romae, ex aed. Francisci Minitii Calvi, 1525.)
With the Life from Soranus.

Aretaeus, 81-7 – 138 A.D.

“Aretaeus lived probably in the second half of the last century, but possibly
towards the end of the 2nd or the beginning of the 3rd. He was a highly
educated author, equally well acquainted with classical literature, history,
poetry, and medicine. Of all medical writers of antiquity whose works have
come down to us, the solidity and clearness of Aretaeus bring him nearest to
Hippocrates, whom he also resembles in his modesty, love of his profession,
and reverence for all that is good and beautiful. Above all, his descriptions
diseases are patterns of fidelity to nature and of literary finish, though not
brilliant phraseology. Haeser (no. 5946, I.P. 341).”

[W. O.]

328. Opera omnia ... novam versionem dedit, Johannes
Wigan. Oxon., e Typographeo Clarendoniano, 1723.

Galen, 130-200 A.D.

“The greatest name, after Hippocrates, in Greek medicine [was that] of Galen,
born at Pergamon in A.D. 130, in whom was united as never before – and
indeed one may say, never since – the treble combination of observer, ex-
perimenter and philosopher.”

[W. O., Evolution of Modern Medicine. p.75.]

364. OEuvres anatomiques, physiologiques et médicales de Galien.
Traduites sur les textes imprimés et manuscrits, accompagnées de
sommaires ……….Paris, B. Baillière, 1854-56. 2 tomes.

Vesalius, Andreas, 1514-1564.

“In itself, for what it contains, but still more for what it did, the ‘Humani
corpus fabrica’ is one of the great books of the world, with which in the
literature of Medicine only the ‘De motu cordis’ of Harvey is to be compared.
The one revolutionized anatomy, the other created modern physiology. This
work of Vesalius is the first modern treatise on anatomy based upon dissections
of the human body. To appreciate the extraordinary character of the descri-
tions and of the plates they must be compared with contemporary works.
Vesalius really described the body as we know it, for the first time fully, and
for the first time accurately. It is difficult to say whether in text or figure the departure from the anatomy of the day is the most striking. There are grave mistakes of omission and of commission, but they appear insignificant in a volume full of such important contributions. To the middle of the 16th century anatomy was taught from the writings of Galen, not from what was seen in the occasional public dissections. From what the great Master had written there was no appeal, and the veneration with which his works were regarded was as for a gospel, like the feeling men have towards the sacred Scriptures. Imagine the surprise and consternation of the easy-going old professors who held the chairs of anatomy to have a huge volume thrust into their hands filled from cover to cover with descriptions and figures with which they were unfamiliar. And written by a young man of 28! Headed by his old teacher Sylvius a storm of opposition soon raged, and a vindication of Galen was attempted, but it was soon found that the old anatomy, correct enough in places, was largely that of swine, dogs and monkeys, while the 'Fabrica' contained descriptions and figures from human dissections. To understand the phenomenon, almost unique in the history of science, of a revolution of this character effected by so young a man, we must remember that from boyhood Vesalius had had a perfect passion for dissecting. After devoting his energies to the anatomy of domestic animals, he robbed graveyards and the gallows for human skeletons, while as early as 1534-36, as prosector to Sylvius and Guinterius in Paris, he had opportunities to dissect the human body. The 'Fabrica' remains a monument of human effort, one of the greatest in the history of our profession.”

[W. O.]

Paré, Ambroise, 1510-1590.
“[Paré] surely stands alone in the surgery of the renaissance as an independent, original and inventive genius, and as a gentle, masterly and true man.”
(Allbutt, no. 5624, p.80.)

[W. O.]

660. OEuvres complètes, accompagnées de Notes historiques et critiques; et précédées d'une Introduction sur l'Origine et les Progres de la Chirurgie ………
Malgaigne, Par., 1840-1. 3 tomes.

Harvey, William, 1578-1657.
“Harvey returned to Greek method and became the founder of modern experimental physiology and the great glory of British scientific medicine.”
[W. O., Aequanimitas.]

701. The Anatomical Exercises of Dr. William Harvey concerning the motion of the Heart and Blood. Lond., pr.
for R. Lowndes and M. Gilliflower, 1673.

Columbus, [Matthaeus] Realdus, 1494? or 1516?-1559.

897. De Re Anatomica libri XV. Ven., ex typogr.
Beuilacqua, 1559.

Descartes, René, 1596-1650.

"It was a philosopher of another kidney, René Descartes, who did more than anyone else to help men to realize the value of the better way which Harvey had pointed out. That the beginning of wisdom was in doubt, not in authority, was a novel doctrine in the world, but Descartes was no armchair philosopher, and his strong advocacy and practice of experimentation had a profound influence in directing men to "la nouvelle methode." He brought the human body, the earthly machine, as he calls it, into the sphere of mechanics and physics, and he wrote the first textbook of physiology, De l'Homme.

Boyle, Robert, 1627-1691.

"It is a remarkable fact that the distinguished English philosopher of the 17th century, the man who more than anyone else of his century appreciated the importance of the experimental method, Robert Boyle, had said that he who could discover the nature of ferments and fermentation, would be more capable than anyone else of explaining the nature of certain diseases."

Malpighi, Marcello, 1628-1694.

Sydenham, Thomas, 1624-1689.
“Sydenham was called “a man of many doubts” and therein lay the secret of his great strength.”
[W. O., British Medicine in Greater Britain.]

994. Observationes medicae circa Morborum acutorum Historiam et Curationem … Lond., typis A. C., impens.
Gault. Kettilyby, 1676.

“Haller lives in his bibliographies and poems, and a halo of reminiscence surrounds him as one of the outstanding figures of the 18th century: (a) His scientific work has long since passed into the impersonal stage, but to his credit stand researches of the first rank in the irritability of muscle and nerve, a demonstration of the myogenic theory of the heart’s action, an admirable and accurate account of the mechanics of respiration, and the first great modern treatise on Physiology. How many ‘new’ discoveries are adumbrated in his works may be gathered from Kronecker’s ‘Haller redivivus’ (no. 1172). (b) Haller is the greatest bibliographer in our ranks. Next to the Index-Catalogue of the Surgeon-General’s Library, his works have been most helpful in the preparation of this catalogue. To learning and judgement he added that indispensable quality in a bibliographer, accuracy. No one has paid a sounder tribute of affection to him than that inimitable character James Atkinson in his two-letter bibliography (no. 6874), p. 49. (c) As a poet Haller is in the first rank of our medical poets – “der edelste und tiefste und vor allem … der wahrste unter den deutschen Lyrikern und trotz vieler Härten Seines ausdrucks … einer der ersten Meister der Sprache” (Hirzel, no. 1167, p. CDXXIX).”
[W. O.]

1156. Opera minora emendata, aucta, et renovata, Lausannae, 1762(-8).

Morgagni, Giovanni Battista, 1682-1771.
“To know accurately the anatomical changes that take place in disease is of importance both for diagnosis and for treatment. The man who created the science, who taught us to think anatomically of disease, was Morgagni, whose “De sedibus et causis morborum per anatomen indagatis” is one of the great books in our literature. During the 17th century, the practice of making post-mortem examinations had extended greatly, and in “Sepulchretum anatomicum” of Bonetus (1679), these scattered fragments are collected. But the work of Morgagni is of a different type, for in it are the clinical and anatomical observations of an able physician during a long and active life.”
[W. O., Evolution of Modern Medicine. p. 185.]

1178. De Sedibus, et causis Morborum per Anatomen indagatis, libri quinque … Tomi 2 … Ven., 1761.
Hunter, John, 1728-1793.

“But the man who combined the qualities of Vesalius, Harvey and Morgagni in an extraordinary personality was John Hunter. He was, in the first place, a naturalist to whom pathological processes were only a small part of a stupendous whole, governed by law, which, however, could never be understood until the facts had been accumulated, tabulated and systematized. By his example, by his prodigious industry, and by his suggestive experiments he led men again into the old paths of Aristotle, Galen and Harvey. He made all thinking physicians naturalists, and he lent a dignity to the study of organic life, and re-established a close union between medicine and the natural sciences.”

Jenner, Edward, 1749-1823.

“A vague notion had prevailed among the dairies from time immemorial that this disease [cowpox] was a preventive of the smallpox. Jenner put the matter to the test of experiment. Let me quote here his own words: ‘The first experiment was made upon a lad of the name of Phipps, in whose arm a little vaccine virus was inserted, taken from the hand of a young woman who had been accidentally infected by a cow. Notwithstanding the resemblance with the pustule, thus excited on the boy’s arm, bore to variolous inoculation, yet as the indisposition attending it was barely perceptible, I could scarcely persuade myself the patient was secure from the Small Fox. However, on his being inoculated some months afterwards, it proved that he was secure.’

The results of his experiments were published in a famous small quarto volume in 1798. From this date smallpox has been under control. Thanks to Jenner, not a single person in this audience is pockmarked!”

Bichat, [Marie Francois] Xavier, 1771-1802.

“The man who gave the greatest impetus to the study of scientific medicine at this time was Bichat, who pointed out that the pathological changes in disease were not so much in the organs as in tissues. His studies laid the foundation of modern histology. He separated the chief constituent elements of the body into various tissues possessing definite physical and vital qualities. ‘Sensibility and contractability are the fundamental qualities of living matter and of the life of our tissues.’ Thus Bichat substituted for vital forces “vital properaties”, that is to say, a series of vital forces inherent in the different tissues. His Anatomie Generale, published in 1802, gave an extraordinary stimulus to the study of the finer processes of disease, and his famous Recherches sur la Vie et sur la Mort (1800), dealt a deathblow to old iatromechanical and iatro-chemical views.”

Laennec, René Théophile Hyacinthe, 1781-1826.

“It was a pupil of Corvisart, Rene Theophile Laennec, who laid the foundation of modern clinical medicine. Influenced by Corvisart, he began to combine the accurate study of cases in the wards with anatomical investigations in the dead-house. Before Laennec, the examination of a patient had been largely by sense of sight, supplemented by that of touch, as in estimating the degree of fever, or the character of the pulse. The discovery of auscultation by Laennec, and the publication of his work De l'Auscultation Médiate, 1819, marked an era in the study of medicine. The clinical recognition of individual diseases had made really very little progress; with the stethoscope begins the day of physical diagnosis. The clinical pathology of the heart, lungs and abdomen was revolutionized. Laennec’s book is in the category of the eight or ten greatest contributions to the science of medicine. His descriptions of tuberculosis is perhaps the most masterly chapter in clinical medicine. This revolution was effected by a single extension of the Hippocratic method from the bed to the dead-house, and by correlating the signs and symptoms of a disease with its anatomical appearances.”

Bright, Richard, 1789-1858.

“Everywhere the investigation of diseases by clinical-pathological methods widened enormously the diagnostic powers of the physician. By this method Richard Bright, in 1836, opened a new chapter on the relation of the kidney to dropsy, and to albuminous urine. It was not until Bright
began a careful investigation of the bodies of patients who had presented these symptoms, that he discovered the association of various forms of diseases of the kidney with anasarca and albuminous urine.”

[W. O., Evolution of Modern Medicine. p. 204.]

“Vol. I begins with the series of cases on which Bright based his “statements and conjectures regarding the dependence of a peculiar class of Dropsies on disease and irritation of the Kidneys” (pref., p. viii).”

1342. Travels from Vienna through Lower Hungary; with some remarks on the state of Vienna during the Congress, in the year 1814. Edinburgh & Co., 1818.

Morton, William, T. G., 1819-1868.

“Before Oct. 16, 1846, surgical anaesthesia did not exist; within a few months it became a world-wide procedure; and the full credit for its introduction must be given to Morton, who, on the date mentioned, demonstrated at the Massachusetts General Hospital the simplicity and safety of ether anaesthesia. On the priority question, let me quote two appropriate paragraphs: ‘He becomes the true discoverer who establishes the truth; and the sign of the truth is the general acceptance. Whoever, therefore, resumes the investigation of neglected or repudiated doctrine, elicits its true demonstration, and discovers and explains the nature of the efforts which have led to its tacit or declared rejection, may certainly and confidently await the acknowledgments of his right in its discovery’ (Owen, On the archetype and homologies of the vertebrate skeleton, London, 1848, p. 76.). ‘In science the credit goes to the man who convinces the world, not to the man to whom the idea first occurs’ (Francis Darwin, Eugenics Review, 1914). Morton convinced the world; the credit is his. Osler, no. 1365, p.2.

“When this long-looked-for volume arrived in December, 1919, towards the end of his last illness, Sir Wm. Osler asked that the following note be inscribed in it: All things come to him who waits—but it was a pretty close shave this time! Start with the documents that magnetized into life an ancient practice—these pamphlets of Morton’s, Bigelow’s paper, Warren’s paper, and vol. XXXV of the Boston Medical and Surgical Journal. Put these together as the blastoderm from which the enormous literature has developed.
Davy, Sir Humphrey, 1778-1828

"As nitrous oxide in its extensive operation appears capable of destroying physical pain, it may probably be used with advantage during surgical operations in which no great effusion of blood takes place." (p. 556.)

[Osler, no. 1365, p.4.)"

Bernard, Claude, 1813-1878

“One of the greatest contributions of the 19th century to scientific medicine was the discovery of the internal secretions of organs. The basic work on the subject was done by Claude Bernard. More than any other man of his generation, Claude Bernard appreciated the importance of experiment in practical medicine. For him the experimental physician was the physician of the future – a view well borne out by the influence his epoch-making work has had on the treatment of disease. His studies on the glycogenic functions of the liver opened the way for the modern fruitful researches on the internal secretions of the various glands.”

Pasteur, Louis, 1822-1895.

“In December of the same year (1857) Pasteur presented to the Academy of Sciences in Paris a paper on Alcoholic Fermentation in which he concluded that ‘the deduplication of sugar into alcohol and carbonic acid is correlative to a phenomenon of life’. A new era in medicine dates from these two publications. The story of Pasteur’s life is one of the glories of human literature and, as a record of achievement and of nobility of character, is almost without equal. Osler, No. 6260, p. 206.”

[Osler, no. 1365, p.4.)"

Darwin, Charles Robert, 1809-1882.

"Then with the *Origin of Species* came the awakening, and the theory of evolution has not only changed the entire aspect of biology, but has revolutionized every department of human thought."

[W. O., *The Leaven of Science.*]

1566. *One the Origin of Species by means of Natural Selection, or the Preservations of Favoured Races in the Struggle for Life.* London, 1859.

Wallace, Alfred Russel, 1823-1913.

Virchow, Rudolf [Ludwig Karl], 1821-1902

"Virchow's life work has been the study of the processes of disease, and in the profession we revere him as the greatest master that has appeared among us since John Hunter. The influence of his work has been deep and far-reaching, and in one way or another has been felt by each one of us."

[W. O., *Rudolph Virchow, the man and the student.*]

Lister, Joseph, 1st Baron, 1827-1912.

"I have just come from the Abbey service – the most splendid tribute ever paid to our profession, and so richly deserved in the person of Joseph Lister, one of the greatest benefactors of humanity."

[W. O., Quote in Cushing's Life. v.2, p. 308.]

Koch, Robert, 1843-1910.

"Koch is really our medical Galileo, who, by means of a new technique, - pure cultures and isolated staining, - introduced us to a new world. In 1878 [in] his study on the "Aetiology of Wound Infections," he was able to demonstrate conclusively the association of microorganisms with the disease. Upon memorable researches made by a country doctor rests the
modern science of bacteriology....

"It is not too much to say that the demonstration by Koch of the "bacillus tuberculosis" (1882) is, in its far-reaching results, one of the most momentous discoveries ever made."

Roentgen, Wilhelm Conrad, 1845-1923.

"To observation and reasoned thought, the Greek added experiment, but never fully used it in biology, an instrument which has made science productive, and to which the modern world owes its civilization. Our everyday existence depends on the practical application of discoveries in pure science by men who had no other motives than a search for knowledge of Nature’s laws, a disinterestedness which Burnet claims to be the distinctive gifts of Hellas to humanity. With the discovery of induced currents Faraday had no thought of the dynamo. Crookes' tubes were a plaything until Roentgen turned them into practical use with the X-rays."

[W. O., The Old Humanities and the New Science.]

"The past is always with us, never to be escaped; it alone is enduring; but, amidst the changes and chances which succeed one another so rapidly in this life, we are apt to live too much for the present and too much in the future ...

"It is good to hark back to the olden days and gratefully to recall the men whose labours in the past have made the present possible."

[W. O., Aequanimitas.]